Human flight
has become a tired fact of modern life. At any given moment, roughly
5,000 airplanes crisscross the skies above the United States alone,
amounting to an estimated 64 million commercial and private takeoffs
every year [source: NATCA]. Consider the rest of the world's flight activity, and the grand total is incalculable.
It
is easy to take the physics of flight for granted, as well as the ways
in which we exploit them to achieve flight. We often glimpse a plane in
the sky with no greater understanding of the principles involved than a
caveman.
How do these heavy machines take to the air? To answer that question, we have to enter the world of fluid mechanics.
Physicists classify both liquids and gases as fluids, based on how they flow. Even though air, water
and pancake syrup may seem like very different substances, they all
conform to the same set of mathematical relationships. In fact, basic
aerodynamic tests are sometimes performed underwater. To put it simply, a
salmon essentially flies through the sea, and a pelican swims through
the air.
The core of the matter is this: Even a clear sky isn't
empty. Our atmosphere is a massive fluid layer, and the right
application of physics makes it possible for humans to traverse it.
In this article, we'll walk through the basic principles of aviation and the various forces at work in any given flight.
0 comments:
Post a Comment
Saya masih butuh saran dan kritik